SECTION 1 – SERVICES

VERSION 2.0

1. SECTION 1 – SERVICES

1. SECTI	ON 1 – SERVICES	3
1.1	Mains Pole End Service Constructions	4
1.2	House / Building End Constructions	.17
1.3	Customer Poles	.21
1.4	Underground Services from Poles	.27
1.5	Service Cable & Fittings	. 37
1.6	Stringing of Service Conductors	. 60
1.7	Clearances Service Conductors	.64
1.8	Construction Practices	. 69

1.1 Mains Pole End Service Constructions

1.1.1 LVABC Mains to 25mm² Service – Pole End

LVABC Mains to 25mm² Service – Materials List

Γ		1		2		3		4	5	
		Unit Assembly	Store Type	Item Ref	Stock Item	Stock Deens Di	ອscriptbea∩vice	25	Quantity	
		SERV/25/1/PLM	S	97C	145606	Service Strai	in Clamp 2c x	25mm2 AL XLPE	1	
		1 phase - excludes cable		79B	325631	Bolt Open E	ye M16 X 350		1 (or AR)	
	A	Pole End		79A	325630	Bolt Open E	ye M16 X 250		AR	
				79C	325632	Bolt Open E	ye M16 X 400		AR	
				102D	325619	Open Eye N	ut M16		AR	
┝				82A	40441	Nut M16	2 : 6 25	2.	1 (or AR)	
				94D	145619	IPC 25-95mn	n2 main 6-35n	nm2 tee	2 (OFAR)	
				94G	145659	IPC 50-150m	m2 main 6-35	mm2 tee		
	ь	Consumer End		97F	145663	Service Strai	n Insulated C	lamn 2c x 25mm2 AL XI PE	1	
	Ū			29B	323744	Service Brac	ket House Fri	1 (Type 2)	1	
				29K	323401	Service Fuse	Bracket 3 ph	Michaud	1	
				75N	32288	Bolt Hex M1	6 X 350		2	
F				84B	50226	Coach Screw	/ M10 X 65		2	
				94K	145654	IPC - Service	Neutral Conr	nector (House End)	1 (or AR)	
				#N/A	221760	Service Fuse	100amp Mich	naud	1	
	c									
	-	SERV/25/2/PLM	S	97D	145605	Service Strai	n Clamp 4c x	25mm2 AL XLPE	1	
		2 phase - excludes cable		79B	325631	Bolt Open E	ye M16 X 350		1 (or AR)	
		Pole End		79A	325630	Bolt Open E	ye M16 X 250		AR	
T				79C	325632	Bolt Open E	ye M16 X 400		AR	
				102D	325619	Open Eye N	ut M16		AR 1 (at AD)	
				82A	40441	Nut M16	- 2 m e i e C 25 e		1 (or AR)	
	D			94D	145619	IPC 25-95mm	m2 main 6-350	mm2 tee		
				940	145059	IPC 50-150III	1112 111dill 0-55			
		Consumer End		97F	145664	Service Strai	n Insulated C	lamn 4c x 25mm2 AL XI PF	1	
L				29B	323744	Service Brac	ket House End	d (Type 2)	1	
				29K	323401	Service Fuse	Bracket 3 ph	Michaud	1	
				75N	32288	Bolt Hex M1	6 X 350		2	
	_			84B	50226	Coach Screw	/ M10 X 65		2	
	E			94K	145654	IPC - Service	Neutral Conr	nector (House End)	1 (or AR)	
				#N/A	32159	Bolt Hex M8	X 150 GMS		1	
					221760	Service Fuse	e 100amp Mich	naud	2	
┝				100D	168017	End Cap No.	2 8/17mm di	a heatshrink	2	
		SERV/25/3/PLM	S	97D	145605	Service Strai	n Clamp 4c x	25mm2 AL XLPE	1	
	F	3 phase - excludes cable		79B	325631	Bolt Open E	ye M16 X 350			
	'	FOIE EIIG		79A	325630	Bolt Open E	ve M16 X 250			
				1020	225610	Open Eve N	ye IVI16 × 400		AR	
				824	40441	Nut M16			1 (or AR)	
ł				94D	145619	IPC 25-95mn	n2 main 6-35n	nm2 tee	3 (or AR)	
:				94G	145659	IPC 50-150m	m2 main 6-35	mm2 tee	AR	
	G	Consumer End		97F	145664	Service Strai	n Insulated C	lamp 4c x 25mm2 AL XLPE	1	
				29B	323744	Service Brac	ket House End	d (Type 2)	1	
				29K	323401	Service Fuse	Bracket 3 ph	Michaud	1	
I				75N	32288	Bolt Hex M1	6 X 350		2	
Γ				84B	50226	Coach Screw	/ M10 X 65		2	
				94K	145654	IPC - Service	Neutral Conr	nector (House End)	1 (or AR)	
				#N/A	32159	Bolt Hex M8	X 150 GMS		1	
	Н				221760	Service Fuse	100amp Mich	naud	3	
		L	I			1			DIMENSIONS ARE IN MIL	LLIMETRES
ŀ	_				1			Naturalia DTV 1 TD	UNLESS OTHERWISE ST	
	ς						trading as	networks Pit. LID. TasNetworks	STORED IN A RETRIEVAL SYSTEM IN OR TRANSMITTED BY ANY MFANS	I ANY FORM,
	z	щ					ABN: 24 167	357 299	PRIOR PERMISSION OF TASNETWORK	S SFALF
	ᅴᅴ	ISSI			TasN	letworks	SERVICE:	S 25mm2		NTS
	4	IAL			DRAWN	C5 PRO-SOLUTIONS	LVABC N	AINS, POLE END LVAE	BC SERVICES	
	ш Ш	SIGIN			DESIGNED BY	ELECTRO	SERVICE	MATERIAL LIST		Δ1.
	5	ō			CHECKED BY	H.WESTBURY				
	∢				APPROVED BY	A KETLEY	D –	OHC - A001 -	SD - 002	
Т					UAIL APPROVED	u//MAT/19				1 1 1

1.1.2 LVABC Mains / Service to Copper/PVC Service or Consumer Mains

1.1.3 Open Wire Mains to 25mm² LVABC Service from Pole

Open Wire Mains to 25mm² LVABC Service from Pole – Material List

	1		2		3		4	5	
	Unit Assembly	Store Type	Item Ref	Stock Det	6 Stockeenin	estribeonices		Quantity	
	SERV/25/1/PLM	S	97C	145606	Service Stra	in Clamp 2c x	25mm2 AL XLPE	1	
	1 phase - excludes cable		79B	325631	Bolt Open E	ye M16 X 350		1 (or AR)	
A	Pole End		79A	325630	Bolt Open E	ye M16 X 250		AR	
			79C	325632	Bolt Open E	ye M16 X 400		AR	
			102D	325619	Open Eye N	ut M16		AR	
	-		82A	40441	Nut M16			1 (or AR)	
			94F	145662	IPC Al bare i	main 6-35mm	2 tee	2 (or AR)	
			94E	145655	IPC Cu bare	main 6-35mm	2 tee	AR	
10	Consumer End		97E	145663	Service Stra	in Insulated C	Clamp 2c x 25mm2 AL XLPE	1	
			29B	323744	Service Brac	ket House En	d (Type 2)	1	
			29K	323401	Service Fuse	e Bracket 3 ph	Michaud	1	
	1		75IN 940	52288	Coach Scrou	0 X 350		2	
			04D 0/1K	1/1565/			nector (House End)	1 (or AR)	
			#N/Δ	221760	Service Fuse	e 100amn Mic	haud	1	
C			min/A	221700	Scrucerus		hadd		i
	SERV/25/2/PLM	S	97D	145605	Service Stra	in Clamp 4c x	25mm2 AL XLPE	1	
	2 phase - excludes cable		79B	325631	Bolt Open E	ve M16 X 350		1 (or AR)	
	Pole End		79A	325630	Bolt Open E	ye M16 X 250		AR	
]		79C	325632	Bolt Open E	ye M16 X 400		AR	
			102D	325619	Open Eye N	ut M16		AR	
			82A	40441	Nut M16			1 (or AR)	
D			94F	145662	IPC Al bare i	main 6-35mm	2 tee	3 (or AR)	
			94E	145655	IPC Cu bare	main 6-35mm	12 tee	AR	
	Consumer End		97F	145664	Service Stra	in Insulated C	Clamp 4c x 25mm2 AL XLPE	1	
			29B	323744	Service Brac	ket House En	d (Type 2)	1	
			29K	323401	Service Fuse	e Bracket 3 ph	Michaud	1	
			75N	32288	Bolt Hex M1	.6 X 350		2	
			84B	145054	Loach Screv	VIVIIUX 65			
			94K #NL/A	22150	Polt Hox MS		nector (House End)	1	
			#IN/A	22139	Service Euse	a 100amn Mic	haud	2	
	-		100D	168017	End Can No	2 8/17mm di	a heatshrink	2	
			1000	100017		2 0/1/1111 01			
	SERV/25/3/PLM	S	97D	145605	Service Stra	in Clamp 4c x	25mm2 AL XLPE	1	
F	3 phase - excludes cable		79B	325631	Bolt Open E	ye M16 X 350		1 (or AR)	
	Pole End		79A	325630	Bolt Open E	ye M16 X 250		AR	
			79C	325632	Bolt Open E	ye M16 X 400		AR	
			102D	325619	Open Eye N	ut M16		AR	
	1		82A	40441	Nut M16			1 (or AR)	
			94F	145662	IPC Al bare i	main 6-35mm	2 tee	4 (or AR)	
			94E	145655	IPC Cu bare	main 6-35mm	12 tee	AR	
G			055		a (-				
	Consumer End		97F	145664	Service Stra	In Insulated C	lamp 4c x 25mm2 AL XLPE	1	
			29B	323744	Service Brac	Ket House En	a (Type 2) Michaud	1	
	-		29K	323401	Bolt Hoy Ma	е втаскет 3 ph	wichaud	2	
				502268	Coach Scrou	UN 33U		2	
			04D Q/IK	1/1565/			nector (House End)	1 (or AR)	
			μN /Δ	32159	Bolt Hex MR	X 150 GMS		1	
ч н				221760	Service Fuse	e 100amp Mic	haud	3	
:				00			U	MENSIONS ARE IN MIL	LIMETRES
-					+	© Tasmanian	Networks PTY. LTD. NO PA	RT OF THIS DRAWING MAY BE	REPRODUCED,
N N					N	trading as ABN: 24 167 3	TasNetworks OR TR/ 357 299 PRIOR	ANSMITTED BY ANY MEANS W	THOUT THE
-	SSUE			Tasl	Networks	OPEN WI	RE LV SERVICE		SCALE
	AL			DDALW		TAKE OF	F ARRANGEMENTS FROM P	OLE	
l a	IGIN			DESIGNED BY	ELECTRO	MATERIA	L LIST		۸,
[⊢	к К			CHECKED BY	H.WESTBURY				A4
- -				APPROVED BY	A KETLEY	n –	$\Omega H \Gamma = \Delta \Omega \Omega / = S \Gamma$	-002	REVISION A
				DATE APPROVED	07/MAY/2019		UNC AUU4 JL		A

1.1.4 Open Wire Mains to 25mm² LVABC Service from Crossarm

Section 1

1.1.6 Midspan Service

2 3 4 1 5 94B IPCS FOR 50mm' MAIN 0R A (94C) IPCS FOR 50mm' MAIN LVABC MAINS -79A OR 79B OR 79C M16 HOOK BOLT, LENGTH TO SUIT DIAMETER 5 В 30 STRAIN CLAMPS 97A FOR 4 CORE CABLES 0R 97B FOR 2 CORE CABLES 08 LVABC SERVICE 47A 2C 50mm^{*} 47C 4C 50mm^{*} C 10.30.03 2C 95mm' (47D) 9C 95mm' WITH FUSES AT CONSUMER'S END D 94C 94B IPCS FOR 50mm' MAIN OR ľÝ 940 IPCS FOR 50mm' MAIN Ε LVABC MAINS -NEUTRAL CABLE 南南南 - INSTALL DRIP LOOPS F 64D 24E 760 FUSE BRACKET & FUSES STRAIN CLAMPS 97D) FOR 4 CORE CABLES 0R 79A OR 79B OR 79C M16 HOOK BOLT, LENGTH TO SUIT DIAMETER 97C FOR 2 CORE CABLES G 005 LVABC SERVICE 47A 2C 50mm' 47C 4C 50mm' 10.30.03 2C 95mm' 47D 9C 95mm' WITH FUSES AT POLE END Н © Tasmanian Networks PTY. LTD. trading as TasNetworks ABN: 24 167 357 299 NO PART OF THIS DRAWING MAY BE REPRODUCED, STORED IN A RETRIEVAL SYSTEM IN ANY FORM, OR TRANSMITTED BY ANY MEANS WITHOUT THE PROR PERMISSION OF TASMETWORKS S ALTERATION ISSUE SCALE TasNetworks SERVICES - POLE END N.T.S. LVABC MAINS LARGE 50mm2 OR 95mm2 ORIGINAL DRAWN C5 PRO-SOLUTIONS LVABC SERVICE POLE END DESIGNED BY ELECTRO A4 CHECKED BY H.WESTBURY REVISION APPROVED BY A KETLEY D - OHC - A008 - SD - 001 А DATE APPROVED 09/APR/19

LVABC Mains to Large 50mm² or 95 mm² Services – Pole End

		1		2		3	4	5	
		I			онс	M – Section 1 Services	5		
		Unit Accombly	Store Turne	Itom Pof	Stock Itom	Stock Itom Description		Quantity	
A		MIDSERV/25/1/PLM	store rype	970	1/15606	CLAMP TENSION 2 X 25MM	12 - 2 X35MM2 ABCSC	3	
		1 phase - excludes cable	5	504	438912	WIRE ROPE STRAND 3/2 75	5 G1320 3000M DRUM	40	
		Pole End		531	148501	DEADEND FULL TENSION 3	/2 75 GAL COND	2	
				614	322056	CLEVIS ROD-END BALL 16M	MM 70KN MIN-FAIL	1	
				61B	322386	CONNECTOR.ROD-END 16N	MM 80KN MIN-FAIL MCI	1	
				79B	325631	EYE-BOLT.OPEN M16 X 350	MM FIXED WASHER	1 (or AR)	
				79A	325630	EYE-BOLT.OPEN M16 X 250	MM FIXED WASHER	AR	
				79C	325632	EYE-BOLT.OPEN M16 X 450	MM FIXED WASHER	AR	
10				102D	325619	HOOK-NUT, OPEN TYPE T/S	M16 BOLT HOOK	AR	
				82A	40441	NUT, HEX M16 THREAD GAL	ANISED STEEL	1	
				80E	37263	EYE BOLT, FORGED M20 X 3	75MM GAL C/W NUT	1	
	-			82B	40442	NUT, HEX M20 THREAD GAL	ANISED STEEL	1	
				94D	145619	CONNECTOR, IPC LV ABC		2 (or AR)	
				94G	145659	CONNECTOR, IPC LV ABC K	-443 FIG.1	AR	
				94F	145662	CONNECTOR, IPC LV ABC/P	VC R236 ALUMN	AR	
C				94E	145655	CONNECTOR, IPC BARE MA	INS-SERVICE R235	AR	
		Consumer End		75N	32288	BOLT, HEX HEAD M16 X 350	MM GAL. C/W NUT	2	
				29B	323744	BRACKET, CONNECT HOUSE	E SERVICE SHORT HOOK	1	
				29K	323401	BRACKET, HOUSE SERVICE F	USE 32X8MM M-PH	1	
				97E	145663	CLAMP, SERVICE STRAIN 2	X 10-35MM2 XLPE	1	
				82A	40441	NUT, HEX M16 THREAD GAL	ANISED STEEL	2	
_				84B	50226	COACH SCREW, HEX HEAD	10MM X 65MM GAL	2	
10				94K	145654	CONNECTOR, IPC HOUSE SE	ERVICE	1	
				#N/A	221760	FUSEHOLDER, B&C 100A/48	80V 57X22 FERRULE	1	
				100D	168017	END CAP, HEAT SHRINK 17-	8MM CABLE RANGE	2	
	_	MIDSERV/25/3/PLM	S	97D	145605	CLAMP, TENSION 4 X 25MM	12 - 4 X35MM2 ABCSC	3	
		3 phase - excludes cable		50A	438912	WIRE ROPE, STRAND 3/2.75	5 G1320 3000M DRUM	40	
		Pole End		53J	148501	DEADEND, FULL TENSION 3	/2.75 GAL.COND	2	
				61A	322056	CLEVIS, ROD-END BALL 16M	/ /m 70kn Min-Fail	1	
E				61B	322386	CONNECTOR, ROD-END 16	MM 80KN MIN-FAIL MCI	1	
				79B	325631	EYE-BOLT, OPEN M16 X 350	MM FIXED WASHER	1 (or AR)	
				79A	325630	EYE-BOLT, OPEN M16 X 250	MM FIXED WASHER	AR	
				79C	325632	EYE-BOLT, OPEN M16 X 450	MM FIXED WASHER	AR	
				102D	325619	HOOK-NUT, OPEN TYPE T/S	M16 BOLT HOOK	AR	
				82A	40441	NUT, HEX M16 THREAD GAL	ANISED STEEL	1	
				80E	37263	EYE BOLT, FORGED M20 X 3	75MM GAL C/W NUT	1	
F				82B	40442	NUT, HEX M20 THREAD GAL	ANISED STEEL	1	
11				94D	145619	CONNECTOR, IPC LV ABC		4 (or AR)	
				94G	145659	CONNECTOR, IPC LV ABC K	-443 FIG.1	AR	
				94F	145662	CONNECTOR, IPC LV ABC/P	VC R236 ALUMN	AR	
L	-			94E	145655	CONNECTOR, IPC BARE MA	INS-SERVICE R235	AR	
		Consumer End		75N	32288	BOLT, HEX HEAD M16 X 350	MM GAL. C/W NUT	2	
				29B	323744	BRACKET, CONNECT HOUSE	E SERVICE SHORT HOOK	1	
G				29K	323401	BRACKET, HOUSE SERVICE F	USE 32X8MM M-PH	1	
				97F	145664	CLAMP, SERVICE STRAIN 4	X 10-35MM2 XLPE	1	
				82A	40441	NUT, HEX M16 THREAD GAL	ANISED STEEL	3	
				84B	50226	COACH SCREW, HEX HEAD	10MM X 65MM GAL	2	
				94K	145654	CONNECTOR, IPC HOUSE SE	ERVICE	1	
				#N/A	221760	FUSEHOLDER, B&C 100A/48	80V 57X22 FERRULE	3	
				100D	168017	END CAP, HEAT SHRINK 17-	8MM CABLE RANGE	4	
 ц									
п									
								DIMENSIONS ARE IN MIL	
\vdash	+					@ T	Naturalia DTX LTD	UNLESS OTHERWISE ST	
0						trading as	TasNetworks	STORED IN A RETRIEVAL SYSTEM IN OR TRANSMITTED BY ANY MEANS	ANY FORM,
z						ABN: 24 167 3	357 299	PRIOR PERMISSION OF TASNETWORK	S
-					TasNe	etworks	S POLE END		
	<u></u> ≌						MAINS TO LARGE		
1	N			ļ	DRAWN C	5 PRO-SOLUTIONS 50 mm 2 C	DR 95mm2 LVABC SFR	VICES	\vdash
	12				DESIGNED BY E	POLE EN	D MATERIAL LIST		A4
					ADDDOVED BY				REVISION
◄					DATE APPROVED	7/MAY/19 D -	OHC - A008 -	SD - 002	A
L									· · · ·

1.1.8 Service Pole Intermediate for 25mm² LVABC Service

Section 1

1.1.9 Service pole intermediate for Copper / PVC Service Cable

1.1.10 Service Pole Steel Raiser Bracket

1.2 House / Building End Constructions

1.2.1 LVABC Service with Mains Connection Box - Load < 100 A / phase

1.2.2 Michaud Service Fuse Retrofit

1.3.1 Temporary Service Poles

Temporary Service Poles Continued

			1									
		1	2	3		4	5					
A		NOTES										
		1. THIS	STANDARD COVERS FREE STANDING POLES	AND DOES NOT COVER	POLES OR RAISERS	ATTACHED TO BUILDINGS.						
		2 IN GE										
	-	DISPL	ACEMENT ON A BUILDING SITE.	IT SERVICE TOLES ARE	NOT ACCEL TABLE,	being FROME TO BAHAGE OR						
		2 705										
		3. IHE I	PULE LENGTHS SPECIFIED ARE GENERALLT	SUITABLE, ENABLING TR	ANSFER FRUM SITE	TO SITE. IN PARTICULAR CASES-:						
		(A) S	HORTER POLES OF EQUIVALENT SIZE AND I	OUNDATION MAY BE A	CEPTED PROVIDED	PRESCRIBED CLEARANCES ARE MET, AN	D-					
B		(8) 1 (TONC MAY BE NECESCA	DY WHEN DESCOR	ED CLEADANCES CANNOT RE MET						
			UNDER, MORE ROBOST FUELS AND FOUNDAT	IONS MAT DE NECESSA	RT WHEN PRESCRIP	ED CLEARANCES CANNOT DE PIET.						
		4. FOR E	EASE OF REMOVAL TO DIFFERENT SITES TH	E GALVANISED STEEL P	PIPE POLE MAY BE	SOCKETED IN A 150MM ID						
		WITH	CRUSHED METAL DUST.	. FILL SPACE DETWEEN	GALVANIZED STEEL	FIFE AND REINFORCED CONCRETE						
_	-											
		5. DEPTI	H MARK ON POLE TO BE CLEARLY MARKED H OF BURIAL INDICATION MAY BE BY A PA	AT A POINT 1800 FROM	M THE BUTT END FO	OR THE PURPOSE OF CHECKING THE						
		6. SETTI	ING DEPTHS ARE SHOWN FOR AVERAGE CLA	AY OR GRAVEL SOILS -								
10		(A) IN	SOLID ROCK: REDUCE DEPTH BY 230mm									
		(B) IN	I POOR HOLDING GROUND EITHER-:									
		(1)) INCREASE DEPTH BY 230mm, OR I) FOR WOOD POLES AND SOCKETED PIPE P	01 FS INSTALL & 125 x	125 x 900 LONG H	ARDWOOD BREAST LOG AND TOP						
			THE POLE WITH 2, 230 x 75 BRICKS OR	EQUIVALENT CONCRETE	BLOCK OR FLAT ST	ONES.						
	-	7 4575										
		7. AFTEI 100 x	SO HARDWOOD, SET AT 45 DEGREES TO 1	HE POLE. ONE STRUT	SET AGAINST THE P	PULL OF THE SERVICE LINE: THE OTHER	s					
	1	TRAN	SVERSE TO THE SERVICE LINE. THE STRUT	S SHOULD BEAR AGAINS	ST A SUITABLE COL	LAR ON THE POLE AND AGAINST TIMB	íR					
		BEAR	ING BLOCKS IN THE GROUND.									
l n		8. ALL 6	BACK FILLING AROUND POLES OR PIPES TO	BE WELL RAMMED.								
1												
		y. ALL P	POLES TO BE RAKED /SMM AT THE HEAD /	AUAINST THE PULL OF	THE SERVICE.							
		10. SERV	ICE LINES ARE TO BE SAGGED TO APPENDI	K 'D' OF AUSTRALIAN S	STANDARDS WIRING	RULES.						
		11. AI TFI	RNATE POLE TYPES HAVING FOULVALENT S	TRENGTH MAY BE USED	SUBJECT TO THE	APPROVAL OF THE ENGINEER IN CHARC	F.					
		12. TO A SEAS	LLOW FOR SHRINKAGE, GREEN TIMBER SHOL ONED A MINUS TO FRANCE OF 5mm MAY BI	LD BE CUT AT LEAST	10mm OVERSIZE. WI	HERE THE TIMBER IS THOROUGHLY						
		SEAS.										
E		13. ALL 1	TEMPORARY SAWN TIMBER SERVICE POLES	ARE TO BE INSPECTED	AND TESTED EVER	12 MONTHS BY A LICENSED						
-		SOUN	D CONDITION. IF THIS CONDITION IS NOT ME	T THEN THE SERVICE W	ILL BE REMOVED FI	ROM THE POLE.						
	-											
F												
	-											
	1											
	1											
	1											
6	1											
1												
	1											
	4											
	1											
	1											
Н												
							DIMENSIONS ARE IN MIL	LIMETRES				
\vdash	1				(C) Taemanian	Networks PTY ITD	NO PART OF THIS DRAWING MAY BE	E REPRODUCED				
5					trading as	TasNetworks	STORED IN A RETRIEVAL SYSTEM IN	I ANY FORM,				
Z	1]				ABN: 24 167	357 299	PRIOR PERMISSION OF TASNETWORK	5				
-			т.	asNetworks	TITLE 0 /H SFI	RVICES & CONSLIMERS M	AINS					
E I	l <u>∾</u>				TEMPOD	ARY SERVICE POLES		NIS				
8	NAL		DRAWN	C5 PR0-SOLUTIONS		THE SERVICE FUELS		$\mid \mid$				
μ	8		DESIGNED B	r ELECTRO	1							
15	°		CHECKED BY	H.WESTBURY								
			APPROVED	3Y -		0HC - A018 -	SD - 002	REVISION				
1	11		DATE APPR	DVED 10/APR/19	I U -	UNC AVIO -	JU 102	I A				

1.3.2 Customer Poles

		1		2	3		4	5	
				-					
A									
	1								
				ACCE	PTABLE POLE TY	PES AND STRENG	тнѕ		
		POLE		MINIMUM GII	RTH (mm)	DEPTH IN	HEIGHT OF POLE	MAX. ALLOWABLE HORIZONTA	AL.
В		(m)	POLETYPE	AT TOP	2m FROMBUTT	GROUND 'D' (m)	ABOVE GROUND (m)	FORCE AT POLE TOP (kN)	
				(-	,				
		8.0	125x125x5.0 SHS	-	-	1.4	6.6	2.0	
	-		GRADE 350						
		8.0	P.I. HARDWOOD (4kN) *	635	810	1.5	6.5	4.0	
		8.0	P.I. HARDWOOD (6kN) *	635	900	1.5	6.5	6.0	
ſ		9.0	P.I. HARDWOOD (4kN) *	635	860	1.5	7.5	4.0	
_		9.0	P.I. HARDWOOD (6kN) *	655	975	1.65	8.85	4.0	
		10.5	P.I. HARDWOOD (6kN) *	775	1040	1.8	8.7	6.0	
		12.0	P.I. HARDWOOD (4kN) *	675	975	1.8	10.2	4.0	
		12.0	P.I. HARDWOOD (6kN) *	800	1100	1.8	10.2	6.0	
		* MAX \ OR LIN	WORKING STRENGTH, NOT TO 1IT STATE STRENGTH.	BE CONFUSED WITH N	NOMINAL BREAKING	LOAD			
0									
		NOTE							
		THE CUST	OMER MAY SINK THE HOLE	AND ERECT THE POLE.	BUT AN INSPECTION	ON OF THE POLE AN	ND THE HOLE		
	1	WHEN DU	G TO FULL DEPTH WILL BE N	ADE BY THE ELECTRI	CAL CONTRACTOR	BEFORE THE POLE	S ERECTED, TO		
		MARKED	ON THE POLE AND THE HO	LE COMPLY WITH THIS	STANDARD. THE	DATE OF ERECTION	SHALL BE		
_		A PRIVAT	F POLE THAT IS NOT INCLU	DED IN THE ABOVE US	ST IS NOT PERMITT	FD UNIESS IT HAS	BEEN CERTIEIED		
E		BY A REC	COGNISED STRUCTURAL ENGIN	EER SPECIALISING IN	WOOD POLE STREN	GTHS. THE ENGINEER	R SHALL		
		SPELIFI							
		1. THE M 2. THE S	INIMUM DIAMETER AT GROUN TRENGTH RATING OF THE PO	D LEVEL AND AT THE	POLE TOP.	KED PERMANENTI Y	ON THE		
	1	POLE	AT 3450mm FROM THE BUTT.	.) THE RATING SHOULD	D BE IDENTIFIED AS	EITHER THE MAX.	WORKING STRENGTH,	, BREAKING LOAD	
		3. THE W	ALL THICKNESS FOR STEEL	POLES (STEEL TO BE	GALVANISED)				
		4. THE R 5. THE S	EQUIRED BURIED DEPTH. (A M PECIES OF TIMBER IF A NATI	1ARK IS TO PERMANEN	NTLY LABELLED A1 JSED (PERMANENT	3450MM FROM THE	E BUTT) F POLF)		
F		6. THE M	INIMUM RIM THICKNESS OF W	OOD FOR A SAFETY F	ACTOR OF 2.5, 1.5	AND 1.0			
		AND H	REATMENT AT AND BELOW O	PPLICABLE)	IT THE PROMOTION	UF CURRUSION, SUP	-1 RUI		
	-								
G									
	1								
	-								
	1								
Н	1								
								DIMENSIONS ARE IN MII	LIMETRES
	 			1		@ T -1		UNLESS OTHERWISE ST	ATED
S						trading as Tas	works PIY. LID. Networks	STORED IN A RETRIEVAL SYSTEM IN OR TRANSMITTED BY ANY MEANS W	ANY FORM,
N N	<u> </u>			Tar	Networks	ABN: 24 167 357 2	299	PRIOR PERMISSION OF TASNETWORKS	S SCALE
Ē	IS				STACE WOLKS	SERVICES C	USTOMER POLE	S	NTS
RA	INAL			DRAWN	C5 PRO-SOLUTIONS				
ΠE	ORIG			DESIGNED BY	ELECTRO				A4
				APPROVED BY					REVISION
				DATE APPROVE	ED 07/MAY/19	U - U	инс — А019	y - SU - 001	A

Customer Poles Continued

1.3.3 Fuse Mounting on Steel Customer Poles

1.3.4 Steel Pole Intermediate Neutral Bonding

1.4 Underground Services from Poles

1.4.1 Underground Services to Loads < 100 A / Phase

Underground Services to Loads < 100A / Phase

	1 2	3		4	5	
A	NOTES: 1. THIS DRAWING COVERS THE SITUATION A) SUPPLY IS PROVIDED BY MEANS O B) A CUSTOMER REQUEST THAT SUPP C) THE LOAD IS LESS THAN 100 AMPS D) THE SUPPLY IS TO BE CONNECTED	WHERE:- F AN OVERHEAD SYSTEM. LY BE PROVIDED UNDERGRC FER PHASE TO AN TASNETWORKS POL	dund. E in public roa	JDWAY		
в	UNDERGROUND CUSTOMERS MAINS SHALL 2. THE CUSTOMER MUST SIGN AN INDEMIN 3. REFER TO SECTION 1.6 OF UNDERGROUN 4. CUSTOMER'S MAINS CABLE IS TO BE F CONTRACTOR IS TO PROTECT THE CAB INOTE: CORRUGATED CONDUIT IS NOT 5. LISE SERVICE FUSE FUTURIES S.1 No. 2	BE INSTALLED IN THIS INST ITY FORM TO INSTALL CUS ND CABLE DESIGN AND CON: ROTECTED AGAINST WEATH BLE TAILS WHERE NECESSAF ALLOWED ON TASNETWORKS	TANCE BY THE C TOMERS MAINS I STRUCTION MANU IER AND DAMPNE RY WITH HEAT S 5 POLES).	USTOMER N PUBLIC PROPERTY. JAL FOR DETAILS OF DESIGN AND C SS IN ACCORDANCE WITH AS 3000. HRINK MATERIAL OR EQUIVALENT.	CONSTRUCTION ELECTRICAL	
c	CUSTOMERS MAINS CABLE SIZE LARGE 6. THE NUMBER OF INSTALLATIONS CONN 7. POLE MUST BE ON THE SAME SIDE OF 8. LEAVE 1.2 METRES EXTRA CABLE. IN I FUTURE POLE RELOCATION.	THAN 35mm ² . ECTED ON ANY POLE SHOUL THE ROAD AS THE PROPER	LD NOT EXCEED RTY AND WITH I	THREE X 3 PHASE. IN NOMINALLY 10m OF POINT OF EN ONTALLY NEAR THE BASE OF THE	TRY TO THE PROPERTY. POLE TO ALLOW FOR	
D						
E	USE 100 A SERVICE F 22.17.60					
F				MOISTURE BARRIER 2 x Cu CRIMP LUGS OR 2 x QUICK LUGS SEAL WITH MASTIC TAPF		
G	GOOS INSTA CONN OVER	E NECK TO BE ILLED BEFORE CTION TO FFAD MAINS		WHERE POSSIBLE, TIE THE NEUTRAL AND ACTIVE CONDUCTORS TOGETHER WITH NYLON TIES. DRIP LOOP	1	
н	REFER TO NOTES ON DRG D-0H1-0367-SD-002	POLE TOP _PLEASE CLARIRY NEW REFERENCE	ARRANGEME	NT	DIMENSIONS ARE IN MIL UNLESS OTHERWISE ST	LIMETRES ATED
ALTERATIONS	ORIGINAL ISSUE	DRAWN CS PRO-SOLUTIONS DESIGNED BY ELECTRO CHECKED BY H.WESTBURY APPROVED BY - DATE APPROVED I1/APP/19	© Tasmanian trading as ABN: 24 167 : TITLE UNDERGF LOAD <	Networks PTY. LTD. TasNetworks 357 299 ROUND SERVICES FROM PO 100AMPS / PHASE OHC - A022 - S	PART OF THIS DRAWING MAY BE RED IN A RETRIEVAL SYSTEM IN TRANSMITTED BY ANY MEAN DR PERMISSION OF TASNETWORKS DLE DLE DD - 002	REPRODUCED, ANY FORM, THOUT THE SCALE NTS A4 REVISION A

1.4.2 Underground Services from LVABC Mains Loads < 100A / Phase

1.4.4 Underground services to Loads > 100 A / phase

1.4.5 Underground Service from LVABC Mains to loads > 100 A / phase

Section 1

1.4.6 Underground Service to Telecommunications Cabinet

Underground Service to Telecommunications Cabinet

Underground Service to Telecommunications Cabinet

	1	2	3		L	ς				
					i					
4	NOTES:									
_	1. ANY NEV ELECTRIC TAKE SU DOFS NO	W OR RELOCATED TELECOMMUNICAT ITY FROM A POLE CARRYING HIGH JPPLY FROM AN EXISTING TELSTRA IT CARRY HIGH VOI TAGE CONDUCT	ION OR PUBLIC TELEPH VOLTAGE CONDUCTORS ELECTRICAL INSTALLA	ONE CABINET INSTA 5. AN ALTERNATIVE ATION OR FROM A T DERED	LLATION SHOULD NOT BE SUCH AS RELOCATING TH ASNETWORKS POLE OR S	SUPPLIED WITH IE CABINET TO TRUCTURE WHICH				
	2. WHERE A THE CAB	AN UNDERGROUND SUPPLY IS REQU	IRED FROM ANY TASNE WHOLE LENGTH IN A N	ETWORKS POLE OR ON METALLIC PIPE (STRUCTURE TO A PUBLIC COMPLYING WITH AS3000.	TELEPHONE CABINET				
3	3. IN ALL O MECHANI	ASES WHERE THE CABLE AND NON CAL PROTECTION SHALL BE PROVID	I-METALLIC PUPE ARE DED OVER THE NON-ME	EXPOSED ON THE S TALLIC PIPE FROM (URFACE OF A POLE OR S GROUND LEVELTO 300mm /	TUCTURE, ADDITONAL ABOVE THE GROUND				
 THE TELECOMMUNICATIONS PROVIDER SHALL PROVIDE SPARE CONDUIT, CABLE, SADDLES AND NAILS WHICH ARE TO BE SECURELY ATTACHED TO THE POLE FOR TASNETWORKS TO COMPLETE THE INSTALLATION. 										
	5. WHERE A	A TERMINAL BOX IS ATTACHED TO FD DIRECTLY TO THE OVERHEAD S	AN TASNETWORKS PO	LE OR STRUCTURE,	THE CUSTOMERS MAINS C	ABLE MAY BE				
-	6. TELECOM AN LV N	IMUNICATIONS CABINETS SHALL BE IEUTRAL EARTH 6 METRES.	INSTALLED NO NEARER	TO ANY POLE THA	N 3 METRES, OR WHERE	THE POLE CARRIES				
-	7. A MINIMU HV EART	JM SEPARATION OF 15 METRES SHA TH IN ACCORDANCE WITH DRAWING	ALL BE MAINTAINED BE D-0H1-0302-SD-001 AI	TWEEN TELECOMMUN ND 0303-SD-001.	IICATIONS CABINETS AND	ANY TASNETWORKS				
	8. ORANGE	UNDERGROUND PVC CONDUIT MUST	NOT BE EXPOSED TO	DIRECT SUNLIGHT.						
	9. WHERE A POLE. SE	AN OVERHEAD PVC CONDUIT OR SE ERVICE FUSE TO BE INSTALLED ON	RVICE IS REQUIRED NO TAKE OFF POLE IN TH	LV NEUTRAL EARTH IS INSTANCE.	H IS TO BE INTALLED ON	THE TELSTRA SERVICE				
)	10. WHERE I INSERTIN	THE CUSTOMER'S MAINS CABLE IS T IG THE DOUBLE INSULATED CABLE	O BE CONNECTED TO A	AN LV ABC SYSTEM PIERCING CONNECTOR	REMOVE 50mm OF OUTER S.	PVC SHEATH BEFORE				
	 INDEMNIT FOR SUP 	Y FORM TO BE SIGNED BY TELECO	MMUNICATIONS PROVIDI 1 TURRET, STANDARD,	ER FOR THEIR ATTA PILLAR ETC) PROVI	CHMENT TO TASNETWORK DE 20 AMP HRC FUSE FOF	S' POLE OR STRUCTIRE. R CUSTOMER MAINS				
G										
						DIMENTIONS ARE IN MILLI	METRES			
<u>^</u>				© Tasmanian Net trading as Tas	works PTY. LTD. Networks	NO PART OF THIS DRAWING MAY BI STORED IN A RETRIEVAL SYSTEM IN OR TRANSMITTED BY ANY MEANS V	E REPRODUCEI ANY FORM, VITHOUT THE			
I I U V			TasNetworks	ABN: 24 167 357 2 TITLE 0/H SERVIO	»» Te to telecommun	PRIOR PERMISSION OF TASNETWORK	s scale NTS			
IGINAL		DRAWN	CS PRO-SOLUTIONS				Λ/			
			BY H.WESTBURY				A 4 REVISION			
<u>` </u>		DATE AF	PROVED 16/APR/19	U - 0	нс — А026 -	- SD - 003	A			
1.5 Service Cable & Fittings

1.5.1 Approved Service Conductors

The following types of service cables are approved for use:

- a) LVABC Aluminium / XPLE cable 2, 3 & 4 core cable.
- b) Insulated conductors that include 2, 3 & 4 core twisted or figure 8 copper, with PVC insulation.
- c) Single core conductors comprised of copper aerial conductors with a black PVC cover. CAUTION: This PVC covering does not reliably provide for 250V insulation as must be treated as bare conductor. These conductors have been traditionally used for "open wire" services since mid-1976.

Bare service conductors are not permitted for either new services or aerial consumers mains, however, have been installed in the past (prior to 1/6/87). Where bare service conductors require augmenting, they are to be replaced with insulated conductors.

Where distribution poles are replaced and with bare service conductor attached, and it is not economic to replace the bare service cables with approved service cables, the following minimum conductor vertical separation it is to be achieved.

Vertical Separation (mm)	Span Range (m)
400	Up to 10
500	10 to 25
600	25 to 45
700	45 to 60

1.5.2 Service Cable Details

A THE FOLLOWING TABLE LISTS GENERAL DATA ON THE SERVICE CONDUCTORS B Not APPLIABLE CONSTRUCTION MANUAL ALUMNUMCORE SECTIONAL AREA AREA METRIC VIENE					2		3		4		5
A THE FOLLOWING TABLE LISTS GENERAL DATA ON THE SERVICE CONDUCTORS NOT APPLICABLE FOR THE CONSTRUCTION MANUAL B SERVICE CONDUCTOR ALUMINIUM CORE ALUMINIUM CORE ALIZ ALUMINIUM CORE ALUMINIUM CORE ALUMINIUM CORE ALUMINIUM CORE A									·		
A THE FOLLOWING TABLE LISTS GENERAL DATA ON THE SERVICE CONDUCTORS B Interview Voltable construction Aubition Voltable construction Aubition <th>Δ</th> <td></td>	Δ										
THE FOLLOWING TABLE LISTS GENERAL DATA ON THE SERVICE CONDUCTORS NOT APPLICABLE CONDUCTORS NOT APPLICABLE FOR THE CONTINIOUS CURRENT ALUMINIUM CORE ALUMINIUM CORE ALUMINIUM CORE 2 25 SECTIONAL AREA METRIC OVERALL AREA MMSS CONTINIOUS CURRENT MMSS SERVICE FOR MMSS RIZE CONSUMER MAINS MMS VOLT DROP mV/m 2 25 25 17.2 0.2 125 2.89 0 3 25 25 17.2 0.2 125 2.59 2.51 4 25 25 20.7 0.4 105 2.59 2.31 5 2.59 2.51 10.6 6.3 x 13.5 0.236 80 - 4.42 6 0.6/1kV 10 6.3 x 13.5 0.236 80 - 4.42 3 7/1.35 10 6.3 x 13.5 0.236 80 - 4.42 4 7/1.04 6.8 12.5 0.252 55 - - 4 7/1.70 16 16 0.36 1100 - - 4											
B SERVICE CONDUCTOR XLPE INSULATED ALUMINIUM CORE SECTIONAL AREA METRIC OVERALL MAREA METRIC MASS MAREA PER PHASE CONTINIOUS CURRENT RATING MAREAR CONTINIOUS CURRENT RATING AMPS/PHASE VOLT DROP MAX SIZE OF V75 UNENCLOSED CONSUMER MAINS VOLT DROP MV/m 2 25 25 172 0.2 125 2.89 1 ph 1 ph 3 3 25 25 18.5 0.3 105 2.59 2.31 4 25 25 10.6 6.3 x 13.5 0.236 80 - 4.42 3 7/1.35 10 6.3 x 13.5 0.236 80 - 4.42 4 '7/1.35 10 14 0.354 60 - 4.42 4 '7/1.04 6.8 12 0.252 55 - 4 2 '7/1.04 16 7.3 x 14.6 0.36 110 16 2.83 - 4 '7/1.04 16 16 0.355 - - - 4		Т	HE EC		G TABLE		GENE	- RAL DAT	A ON THE S	FRVIC	F
B SERVICE CONDUCTOR PORTAL SERVICE CONDUCTOR ALUMINIUMCORE SECTIONAL AREA PER PHASE OVERALL DIAMETER mm² MASS Rg/m CONTINIOUS CURRENT RATING AMPS/PHASE SERVICE FOR MAX SIZE CONSTRUCTION PANUAL VOLT DROP mV/Am 2 25 25 25 17.2 0.2 125 2.89 1 4 25 25 18.5 0.3 105 2.59 2.31 5 3 25 25 10.0 6.3 x 13.5 0.236 80 - 4.42 4 25 25 10.0 6.3 x 13.5 0.236 80 - 4.42 2 *7/1.35 10 14 0.354 60 - 4.42 4 *71.35 10 14 0.356 55 - - 4 *71.04 6.8 14 0.336 100 - 4.42 4 *71.04 16.8 7.5 x 15.0 0.336 100 - - 2 *11.70 16		I			JIADLL	CON		IRS	A ON THE S		
B No of CORES SERVICE CONDUCTOR ALUMNIUM CORE SECTIONAL AREA ALUMNIUM CORE OVERALL DIAMETER mm ² MASS MASS Mass Mass Mass Mass Mass Mass Mass Ma						0.011	50010				
B No of C SERVICE CONDUCTOR ALUMINIUM CORE SECTIONAL AREA PER PHASE OVERALL DIAMETER mm MASS Rg/m CONTINIOUS CURRENT RATING SERVICE FOR MAX SIZE OF V75 UNENCLOSED VOL TOROP mV/Am 2 25 25 17.2 0.2 125 2.89 - 4 25 25 18.5 0.3 105 2.59 - 2 1 25 25 18.5 0.3 105 2.59 - 4 25 25 20.7 0.4 105 2.59 2.31 5 SERVICE CONDUCTOR HARD DRAWN COPPER V75 INSULATED 0.6/1kV 10 6.3 x13.5 0.236 80 - 4.42 4 7/1.35 10 14 0.354 60 - 4.42 4 * 7/1.04 6.8 10.472 60 - 4.42 2 7/1.70 16 16 0.56 100 - - 2 7/1.70 16 7.5 x15.0 0.386 100 -											
B SERVICE CONDUCTOR ALUMINIUM CORE SECTIONAL ALUMINIUM CORE OVERALL PER PHASE MASS BG/M CONTINUOUS AUMRITER MBS/PHASE SERVICE FOR MAX SIZE VOLT DROP mVAm 2 25 25 17.2 0.2 125 2.89 1 4 25 25 17.2 0.2 125 2.69 2.59 4 25 25 17.2 0.2 125 2.69 2.59 5 3 25 25 18.5 0.3 105 2.59 2.31 6 3 5 7/1.35 10 6.3 x 13.5 0.286 80 - 4.42 - 7/1.35 10 14 0.354 60 - 4.42 - 1 7/1.35 10 14 0.356 80 - 4.42 - 1 7/1.04 6.8 12.5 0.262 55 - - 2 7/1.04 6.8 14 0.336 100 <t< td=""><th></th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>NOT APPL</td><td>ICABLE</td></t<>										NOT APPL	ICABLE
F F F F F F F F										CONSTRUC	TION MANUA
Image: Construction of the construction of			•								
No OF CORES ALUMINIUM CORE METRIC SECTIONAL IMPERIAL OVERALL PER PHASE mm ² MASS kg/m CONTINUOUS CURRENT AMPS/PHASE MMAX SL2 OF V75 UNENCLOSED CONSUME MAINS mm ² mm/km 2 25 25 17.2 0.2 125 2.89 4 25 25 18.5 0.3 105 2.59 2.31 4 25 25 20.7 0.4 105 2.59 2.31 4 25 25 20.7 0.4 105 2.59 2.31 6 SERVICE CONDUCTOR HARD DRAWN COPPER V75 INSULATED 0.6/1KV 10 6.3 x 13.5 0.236 80 - 4.42 - 2 * 7/.044 6.8 6.0 x 12.5 0.168 6.6 - - - 3 * 7/.044 6.8 12.5 0.252 5.5 - - - 4 * 7/.044 6.8 14 0.336 100 - - - - - - - - -			SERVICE XLPE I	CONDUCTOR NSULATED	05050044				SERVICE FOR	VOLT	DROP
CORES METRIC IMPERIAL PER PHASE mm ² DUMMETER mm ² kg/m RATING AMPS/PHASE UNENCLOSED CONSUMER MAINS mm ² ph 1 ph 3 2 25 25 17.2 0.2 125 2.89		No OF	ALUMI	NIUMCORE	AREA	OVERALL	MASS	CURRENT	OF V75	mV	/Am
C METRIC IMPERIAL mm American and a strain and a mark of the strain and a strain and strain and a strain and a strain		CORES			PER PHASE	mm	kg/m				
Image: constraint of the second sec	C		METRIC	IMPERIAL	mm			AMES/FRASE	mm ²	ph 1	ph 3
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		2	25		25	17.2	0.2	125		2.89	
4 25 26 20.7 0.4 105 2.59 2.31 B SERVICE CONDUCTOR HARD DRAWN COPPER V75 INSULATED 0.6/1KV SERVICE CONDUCTOR HARD DRAWN COPPER V75 INSULATED 0.6/1KV 10 6.3 x 13.5 0.236 80 - 4.42 - 2 * 7/.044 6.8 6.0 x 12.5 0.168 65 - - - 4.42 3 71.35 10 14 0.354 60 - 4.42 - 4 * 7/.044 6.8 12.5 0.252 55 - - - 4 * 71.04 6.8 14.5 0.366 110 16 2.83 - 4 * 71.04 6.8 14 0.336 55 - - 2 71.70 16 7.5 x 15.0 0.336 100 - - 3 * 71.064 14.5 16 0.55 100 - - 4 71.70 16 18		* 3	25		25	18.5	0.3	105		2.59	
D SERVICE CONDUCTOR HARD DRAWN COPPER V75 INSULATED 0.6/1KV 2 *7/1.35 10 6.3 × 13.5 0.236 80 - 4.42 3 *7/1.35 10 14 0.354 60 - 4.42 3 7/1.35 10 14 0.354 60 - 4.42 4 *7/1.35 10 14 0.354 60 - 4.42 4 *7/1.35 10 14 0.354 60 - 4.42 4 *7/1.35 10 15.6 0.472 60 - 4.42 3.83 4 *7/1.35 10 15.6 0.472 60 - 4.42 3.83 2 7/1.70 16 7.3 × 14.6 0.36 110 16 2.83 - 3 7/1.70 16 16 0.505 100 - - - - - - - - - - -		4	25		25	20.7	0.4	105		2.59	2.31
$ F = \left[\begin{array}{c c c c c c c c c c c c c c c c c c c $											
$F = \begin{bmatrix} $ \frac{0.6/1 \text{kV}}{2} \\ \frac{2}{3} & \frac{7/1.35}{3} & 10 & 6.3 \times 13.5 & 0.236 & 80 & - & 4.42 \\ \hline * & 7/.044 & 6.8 & 6.0 \times 12.5 & 0.168 & 65 & - & & \\ \hline 3 & 7/1.35 & 10 & 14 & 0.354 & 60 & - & 4.42 \\ \hline * & 7/.044 & 6.8 & 12.5 & 0.252 & 55 & - & & \\ \hline 4 & \frac{7/1.35}{3} & 10 & 15.6 & 0.472 & 60 & - & 4.42 & 3.83 \\ \hline * & 7/.044 & 6.8 & 14 & 0.336 & 55 & - & & \\ \hline 2 & 7/1.70 & 16 & 7.3 \times 14.6 & 0.36 & 110 & 16 & 2.83 & - \\ \hline 3 & 7/1.70 & 16 & 7.5 \times 15.0 & 0.336 & 100 & - & & \\ \hline 3 & 7/1.70 & 16 & 16 & 0.554 & 100 & 355 & 2.83 & - \\ \hline 4 & 7/1.70 & 16 & 18 & 0.72 & 100 & 355 & 2.83 & - \\ \hline 4 & 7/1.70 & 16 & 18 & 0.72 & 100 & 355 & 2.83 & - \\ \hline 4 & 7/1.70 & 16 & 18 & 0.67 & 100 & - & & \\ \hline 1 & \frac{7/1.70}{7} & 16 & 16 & 7.3 & 0.18 & 855 & - & & \\ \hline 1 & 7/1.70 & 16 & 7.3 & 0.18 & 110 & - & 2.83 & 2.45 \\ \hline \end{array}$	D		V75 IN	AVIN COFFER							
$ { $			0	.6/1kV							
$ F = \left[\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2	* 7/1.35		10	6.3 x 13.5	0.236	80	-	4.42	
$F = \begin{bmatrix} 3 & \frac{7/1.35}{*} & \frac{10}{1.044} & \frac{14}{6.8} & \frac{10}{2.52} & \frac{10}{55} & \frac{14}{2.5} & \frac{10}{2.52} & \frac{14}{55} & \frac{10}{2.55} & \frac{14}{2.5} & \frac{10}{2.52} & \frac{11}{55} & \frac{10}{2.55} & \frac{14}{2.5} & \frac{10}{2.55} & \frac{10}{2.5$			*	7/.044	6.8	6.0 x 12.5	0.168	65	-	4.40	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		3	*	7/.044	6.8	14	0.354	55	-	4.42	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	E		*7/1.35		10	15.6	0.472	60	-	4.42	3.83
$ F = \begin{bmatrix} 2 & \frac{7/1.70}{*} & \frac{16}{1.45} & \frac{7.3 \times 14.6}{7.3 \times 14.6} & 0.36 & \frac{110}{10} & \frac{16}{16} & \frac{2.83}{2.83} & - \\ \hline & & 7/.064 & \frac{14.5}{1.65} & \frac{7.5 \times 15.0}{1.66} & \frac{0.336}{1.00} & \frac{100}{1.00} & - \\ \hline & & \frac{7/1.70}{*} & \frac{16}{1.66} & \frac{16}{1.66} & \frac{0.505}{1.00} & \frac{100}{1.00} & - \\ \hline & & \frac{7/1.70}{*} & \frac{16}{1.66} & \frac{18}{1.65} & \frac{0.72}{1.00} & \frac{35}{3.55} & \frac{2.83}{2.83} & \frac{2.45}{2.83} \\ \hline & & \frac{7/1.70}{*} & \frac{16}{1.66} & \frac{18}{1.65} & \frac{0.67}{1.00} & - \\ \hline & & \frac{7/1.35}{*} & \frac{100}{1.06} & \frac{6.3}{6.3} & \frac{0.118}{0.118} & \frac{85}{85} & - \\ \hline & & \frac{1}{1} & \frac{7/1.70}{*} & \frac{16}{1.66} & \frac{7.3}{7.3} & \frac{0.18}{1.16} & \frac{110}{1.06} & - \\ \hline & & \frac{1}{1} & \frac{7/1.70}{*} & \frac{16}{1.66} & \frac{7.5}{7.5} & \frac{0.168}{1.68} & \frac{100}{1.00} & - \\ \hline \end{bmatrix} $		4	*	7/.044	6.8	14	0.336	55	-		
$F = \begin{bmatrix} 1 & 7/.064 & 14.5 & 7.5 \times 15.0 & 0.336 & 100 & - & & & \\ 3 & 7/1.70 & 16 & 16 & 0.54 & 100 & 35 & 2.83 & - \\ \hline * & 7/.064 & 14.5 & 16 & 0.505 & 100 & - & & \\ 4 & 7/1.70 & 16 & 18 & 0.72 & 100 & 35 & 2.83 & 2.45 \\ \hline * & 7/.064 & 14.5 & 18 & 0.67 & 100 & - & & \\ 1 & 7/1.35 & 10 & 6.3 & 0.118 & 85 & - & 4.42 & 3.83 \\ \hline * & 7/.044 & 6.8 & 6 & 0.084 & 65 & - & & \\ 1 & 7/1.70 & 16 & 7.3 & 0.18 & 110 & - & 2.83 & 2.45 \\ \hline \end{array}$		2	7/1.70	7/004	16	7.3 x 14.6	0.36	110	16	2.83	-
$F = \begin{bmatrix} 3 & \frac{1}{4} & \frac{7/.064}{4} & \frac{14.5}{16} & \frac{16}{16} & \frac{0.505}{100} & \frac{100}{-} & \frac{100}{4} \\ 4 & \frac{7/1.70}{4} & \frac{16}{16} & \frac{18}{18} & \frac{0.72}{100} & \frac{100}{35} & \frac{2.83}{2.45} \\ \frac{4}{7/1.35} & \frac{7/.064}{14.5} & \frac{14.5}{18} & \frac{18}{0.67} & \frac{100}{-} & \frac{1}{100} \\ 1 & \frac{*7/1.35}{4} & \frac{100}{6.3} & \frac{6.3}{0.118} & \frac{85}{5} & \frac{1}{-} & \frac{4.42}{4} & \frac{3.83}{3.83} \\ \frac{1}{7} & \frac{7/.044}{14.5} & \frac{16}{16} & \frac{7.3}{7.3} & \frac{0.18}{0.18} & \frac{110}{100} & \frac{1}{-} & \frac{2.83}{2.45} \\ 1 & \frac{1}{7} & \frac{7/.064}{14.5} & \frac{14.5}{7.5} & \frac{7.6}{0.168} & \frac{100}{100} & \frac{1}{-} & \frac{1}{7} \\ 1 & \frac{1}{7} & \frac{7/.064}{14.5} & \frac{14.5}{7.5} & \frac{7.6}{0.168} & \frac{100}{100} & \frac{1}{-} & \frac{1}{7} \\ 1 & \frac{1}{7} & \frac{7/.064}{14.5} & \frac{14.5}{7.5} & \frac{7.6}{0.168} & \frac{100}{100} & \frac{1}{-} & \frac{1}{7} \\ 1 & \frac{1}{7} & 1$			7/1.70	77.064	14.5	7.5 x 15.0 16	0.336	100	- 35	2.83	-
$ F = \begin{bmatrix} 4 & \frac{7/1.70}{*} & \frac{16}{18} & \frac{18}{0.72} & \frac{100}{100} & \frac{35}{35} & \frac{2.83}{2.45} \\ \hline & & \frac{7/1.70}{*} & \frac{14.5}{10} & \frac{18}{0.67} & \frac{100}{100} & - & \frac{1}{100} \\ \hline & & \frac{7/1.35}{*} & \frac{10}{7.044} & \frac{6.8}{6.8} & \frac{6}{0.084} & \frac{65}{65} & - & \frac{1}{100} \\ \hline & & \frac{7/1.70}{10} & \frac{16}{16} & \frac{7.3}{7.3} & \frac{0.18}{0.18} & \frac{110}{100} & - & \frac{2.83}{2.45} & \frac{2.45}{2.45} \\ \hline \end{array} $		3	*	7/.064	14.5	16	0.505	100	-		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		4	7/1.70		16	18	0.72	100	35	2.83	2.45
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	F		*	7/.064	14.5	18	0.67	100	-	4.42	2 0 2
1 7/1.70 16 7.3 0.18 110 - 2.83 2.45		1	*	7/.044	6.8	6	0.084	65	-	4.42	3.63
* 7/064 14.5 7.5 0.168 100		1	7/1.70		16	7.3	0.18	110	-	2.83	2.45
	\square		*	7/.064	14.5	7.5	0.168	100	-		
1 <u>19/1.35</u> <u>25</u> 9.4 0.3 <u>150</u> 70 <u>1.74</u> <u>1.5</u>		1	19/1.35 *	7/ 080	25 22 7	9.4 a	0.3	150	70	1.74	1.5
	G		19/1.78	11.000	50	12	0.511	210	120	1.12	0.97
G 19/1.78 50 12 0.511 210 120 1.12 0.97		1	*	19/.064	38.4	11.5	0.427	180	-		
G 1 19/1.78 22.7 9 0.247 135 - 0.12 0.97 * 19/064 38.4 11.5 0.427 180 - 0.097		1	19/2.14	40/000	70	13.8	0.722	265	185	0.89	0.77
G 1 19/1.78 22.7 9 0.247 135 - 1 0.097 1 19/1.78 50 12 0.511 210 120 1.12 0.97 * 19/.064 38.4 11.5 0.427 180 - 1 1 19/2.14 70 13.8 0.722 265 185 0.89 0.77			*	19/.083	66.3	14.5	0.668	250	-		
G 1 19/1.78 22.7 9 0.247 138 - 0 0.097 1 19/1.78 50 12 0.511 210 120 1.12 0.97 * 19/.064 38.4 11.5 0.427 180 - 0 1 19/2.14 70 13.8 0.722 265 185 0.89 0.77			*	19/.083	66.3	14.5	0.668	250	-		
1 19/1.35 25 9.4 0.3 150 70 1.74	F	4 1 1 1 1 1	7/1.70 * *7/1.35 * 7/1.70 * 19/1.35 * 19/1.78 * 19/1.78 *	7/.064 7/.064 7/.044 7/.064 7/.080 19/.064	14.5 16 14.5 10 6.8 16 14.5 25 22.7 50 38.4 70	16 18 18 6.3 6 7.3 7.5 9.4 9 12 11.5 13.8	0.505 0.72 0.67 0.118 0.084 0.18 0.168 0.3 0.247 0.511 0.427 0.722	100 100 85 65 110 100 150 135 210 180 265	- 35 - - - - 70 - 120 - 185	2.83 4.42 2.83 1.74 1.12 0.89	
	G		19/1.78		50	12	0.511	210	120	1.12	0.97
G 1 19/1.78 50 12 0.511 210 120 1.12 0.97		'	*	19/.064	38.4	11.5	0.427	180	-		
G 1 19/1.78 50 12 0.511 210 120 1.12 0.97 * 19/064 38.4 11.5 0.427 180 -		1	19/2.14	10/	70	13.8	0.722	265	185	0.89	0.77
G 1 19/1.78 22.7 9 0.247 135 - 1 0.97 1 19/1.78 50 12 0.511 210 120 1.12 0.97 * 19/.064 38.4 11.5 0.427 180 - 1 1 19/2.14 70 13.8 0.722 265 185 0.89 0.77	$\left - \right $		*	19/.083	66.3	14.5	0.668	250	-		

1.5.3 LVABC 25mm² Aluminium / XPLE Service Cables

1.5.4 Comparison of single core Copper cable to nearest Aluminium Equivalent

			· · · ·			1		-	
	1		2	3			4	5	
A									
	СОМРАБ	NON O	E SINGLE CO	ORE INSU		DPPFR C	ABLES TO	NFAREST	
В		ATED /					F DHASE		
		AILD A		GOIVALL	INT CADE		L FHAJL A	ALNIAL)	
	Г		COPPER	1		ALUMINIUM	1	ľ	
	1 -								
		SIZE	STRANDING	CURRENT	SIZE S	TRANDING	CURRENT		
		mm²	- (CAP. AMPS	mm²	_	CAP. AMPS		
r	†	6	7/1.04	62	10				
۲		10	7/1.35	84	16	7/1.70	87		
		16	7/1.70	111	25	19/1.35	120		
		25	19/1.35	152	35	19/1.53	140		
-	4 –	35	19/1.53	177	50	19/1.78	166		
		50	19/1 78	210	70	19/2 14	208		
		70	19/2 14	265	120	37/2.03	200		
		05	19/2.14	203	150	37/2.03	290		
0		90	27/2.02	314	195	37/2.23	327		
		120	27/2.03	308	240	61/2.25	450		
	L	150	31/2.23	414	240	01/2.25	450		
	-								
E		TEMPEDA	E BASED UN SIN	GLE LURE IN:	SULATED LA	BLES WITH	A WIND SPEEL	JUF 0.5 m/s AN	D
	REFERENCE TAP	SIFS 19 &	20 AS/N7S 300	18.1	LKATORE OF	/J (
			20						
	-								
_									
F									
G									
	4								
H									
								DIMENSIONS ARE IN MIL	LIMETRES
L								UNLESS OTHERWISE ST	ATED
5				• •	C Tasmanian	Networks PTY TasNetworks	. LTD. NO F	ART OF THIS DRAWING MAY BE RED IN A RETRIEVAL SYSTEM IN	REPRODUCED,
z					ABN: 24 167	357 299	OR T PRIO	R PERMISSION OF TASNETWORKS	S
2	SSUE		Ta	Networks		ISON OF SU	NGLE CORE INSI		
T A					COPPER	CABLES TO) NEAREST INS	ULATED	NIS
2	INA		DRAWN	C5 PRO-SOLUTIONS		UM EQUIVAI	LENT CABLE		
μ	ORIC		DESIGNED BY	ELECTRO					A4
			APPONVED BY	-					REVISION
◄			DATE APPROV	ED 12/APR/19	- D -	• OHC -	A029 - S	U - 001	A

Strain & Suspension Clamps for 25mm² LVABC Services

1.5.7 Insulated Strain & Suspension Clamps for 25mm² LVABC Services

А

1.5.8 Helical Service Terminations for Copper / PVC Service Cables

		1		2	3			4		5	
			•								
A		CATALOGUE No.	ITEM No.	COMPLETE FITTING S.I. No.	HELICAL TERMINATION COLOUR COD	NEOPR LENG E mm	ENE TH	TUBING S.I. No.	C.	ABLE RANGE	
в	-	DULMISON DIS 1400N	53V	32.41.10	RED	450)	32.41.25	7/1. 7/ [,]	35 (10mm ²) 2 CO 3 CO 4 CO 1.70 (16mm ²) 2 CO	RE RE RE RE
	-	DULMISON DIS 1600N	53W	32.41.15	WHITE	520)	32.41.26	7/1.	70 (16mm ²) 3 CO 4 CO	RE RE
	-	DULMISON DIS 1500N	53X	32.41.05	WHITE	520)	32.41.24	19/1. 19.2.	78 (50mm²) 1 CO 14 (70mm²) 1 CO	RE RE
D	-	FANNER CSG-180-D1-19	53V	32.41.10	WHITE	620)		7/1.	35 (10mm ²) 2 CO 3 CO 4 CO 70 (16mm ²) 2 CO	RE RE RE RE
E		FANNER CSG-220-D1-20	53W	32.41.15	YELLOW	620)		7/1.	70 (16mm ²) 3 CO 4 CO	RE
F	F COLOUR CODE										
G											
н										DIMENSIONS ARE IN MIL	LIMETRES
I O N S	SUE			Ta	asNetworks	C Tasmanian I trading as ABN: 24 167 3	Networks TasNetw 57 299	s PTY. LTD. vorks	NO F Stof Or 1 Prio	UNLESS UTHERWISE ST PART OF THIS DRAWING MAY BE RED IN A RETRIEVAL SYSTEM IN RANSMITTED BY ANY MEANS W R PERMISSION OF TASNETWORK	A I EU E REPRODUCED, I ANY FORM, /ITHOUT THE S SCALE
ERATI	RIGINAL ISS			DRAWN DESIGNED B	CS PRO-SOLUTIONS Y ELECTRO	SERVICES HELICAL FOR COPI	SERVIC	CE TERMIN VC SERVIO	ATIONS CE CABLE	S	NTS AL
ALT				CHECKED BY APPROVED E DATE APPRO	H.WESTBURY 3Y - DVED 15/APR/19	D -	OHC	- A03	33 – S	D - 001	REVISION

1.5.9 Insulation Piercing Connectors for LVABC Service Cable

Insulation Piercing Connectors for LVABC Service Cable

	1	2	2		1			
	1	Ζ	3		4		5	
A								
в					94G S.I. No. 14.56.5 CONNECTOR INSULATING PIERCING FOR 150mm' LVABC N 25mm' SERVICE CABLI TTD241FX	59 5 CONNECTOR 1AIN E		
c								
D			1		94D) S.I. No. 14.56.1 CONNECTOR	9		
E					INSULATING PIERCING 25 - 95mm LVABC N 25mm' SERVICE CABL TTD151FAX	i CONNECTOR 1AIN E		
F								
G								
н						DI	MENSIONS ARE IN MIL ILESS OTHERWISE ST	LIMETRES ATED
S N O I	SSUE	Tas	Networks	C Tasmanian trading as ABN: 24 167 : TITLE ALUMINII	Networks PTY. LTD. TasNetworks 157 299 JM / XLPE CABIF	NO PAR STORED OR TRAI PRIOR P	T OF THIS DRAWING MAY BE IN A RETRIEVAL SYSTEM IN NSMITTED BY ANY MEANS W ERMISSION OF TASNETWORKS	REPRODUCED, ANY FORM, ITHOUT THE SCALE
ERAT	IGINAL I:	DRAWN DESIGNED BY	C5 PRO-SOLUTIONS ELECTRO	INSULAT	ION - PIERCING CO	ONNECTORS	5	
LJ	ß	CHECKED BY	H.WESTBURY		0116	,		A4 REVISION
		DATE APPROVE	D 07/MAY/19	D -	UHL - A03	4 – SD	- 002	А

1.5.10 Service Fuseholders

	1	2	٦		L	5		
			,		1			
A								
в			A					
c		ų	40-		ļ			
D								
	MICHAUD SERVICE FUSE S.I. No. 22.17.60							
E		APPLI	CATION OF S	ERVIC	E FUSES			
		NORMAL FUSE (CARTRIDGE		APPLICATION			
F		100 AMP CARTRIDGE SIZE 57.0mm LONG x S.I. No. 22.24.27	22.2mmØ	A	LL CONSUMER MAINS			
6								
H				Teer '	Naturalize DTV 1 TD	DIMENSIONS ARE IN MI UNLESS OTHERWISE S	LLIMETRES	
TIONS	ISSUE	Ta		ABN: 24 167	TasNetworks PTLLID. NO TasNetworks OR 357 299 PRI AD SERVICES	ORED IN A RETRIEVAL SYSTEM I TRANSMITTED BY ANY MEANS A OR PERMISSION OF TASNETWORK	ANY FORM, VITHOUT THE S SCALE NTS	
RA	INAL	DRAWN	C5 PRO-SOLUTIONS	SERVICE	FUSE HOLDERS			
1	ORIG	DESIGNED BY CHECKED BY	ELECTRO H.WESTBURY				A4	
		APPROVED B	Y -	D –	0HC - A035 - 9	5D - 001	REVISION	
1	1 1	DATE APPRO	VED 15/APR/19				I ^	

1.5.11 Service Fuse Elements

	1	2	1 3			r	
	1	Z	3		4	5	
A		100KR85 415V 851351 3923		S S 1(2	.I. No. 22.24.27 ERVICE FUSE ELEM 00AMP 440V FERRI 2.2mm Ø x 57mm	ENT JLE FUSE LONG	
В				S	I. No. 22.23.90		
c		LAWSON		3 3 2	ERVICE FUSE ELEM 0AMP 440V FERRU 2.2mm Ø x 57mm	ENT LE FUSE LONG	
D		415V 051301		S S 2	.I. No. 22.23.96 ERVICE FUSE ELEM 0AMP 440V FERRU 2.2mm ∅ x 57mm	ENT ILE FUSE LONG	
E		ME		S	.I. No. 22.23.93	ENT	
F		LAWSON	Einil	62	2.2mm Ø x 57mm	LE FUSE LONG	
G		80 AMP 80KR85 ATA 9		S. SE 80 22	I. No. 22.23.95 RVICE FUSE ELEME AMP 440V FERRUI .2mm Ø x 57mm l	INT LE FUSE LONG	
н						DIMENSIONS ARE IN M UNLESS OTHERWISE S	LLIMETRES TATED
s				C Tasmanian trading as	Networks PTY. LTD. TasNetworks	NO PART OF THIS DRAWING MAY E STORED IN A RETRIEVAL SYSTEM I OR TRANSMITTED BY ANY MEANS	E REPRODUCED, N ANY FORM, WITHOUT THE
ATION	AL ISSUE		TasNetworks	ABN: 24 167 TITLE ALUMINIU OVERHEA	357 299 JM XLPE CABLE AD SERVICE COMPC	PRIOR PERMISSION OF TASNETWORI	scale NTS
ER	DRIGINA	DRAWN DESIGNED	C5 PRO-SOLUTIONS BY ELECTRO	SERVICE	FUSE - ELEMENTS	5	A4
A L		CHECKED APPROVEI DATE API	BY H.WESTBURY D BY - PROVED 16/APR/19	- D -	0HC - A036	5 - SD - 001	REVISION

1.5.12 Fuse Identification Tags

1.5.13 Service Raiser Brackets

Service Raiser Brackets

1.6.1 2C 25mm² LVABC Service Stringing to Building

2 3 1 4 5 Α 3 CORE & 4 CORE 25mm² LVABC NO WIND 1.4 1.2 В 1.0 75°C E 0.8 SAG . 5°C 0.6 С 0.4 0.2 5 0 10 15 20 25 30 33 35 D SPAN (m) TO USE THE CHART SELECT THE SPAN LENGTH ON THE BOTTOM AXIS. TRACE UP THE SPAN LENGTH LINE UNTIL IT HITS THE 5° C CURVE. READ ACROSS TO THE SAG AXIS. THIS IS THE SAG AT WHICH THE LINE IS BUILT. TO DETERMINE THE MAXIMUM SAG READ OFF 75° C CURVE. THIS FIGURE IS USED TO DETERMINE THE GROUND CLEARANCE MIDSPAN UNDER MAXIMUM LOAD CONDITIONS. Ε EXAMPLE: 5° C SAG FOR 25M SPAN IS 0.65M & MAXIMUM 75° C SAG IS 0.9M MAXIMUM TERMINATING SPAN 33M F TENSION (kN) SPAN LENGTH (m) 10 20 30 33 350 Pa WIND 15 °C 0.61 0.76 0.81 0.82 3-CORE NO WIND 5 °C 0.35 0.35 0.35 0.35 350 Pa WIND 15 °C 0.75 0.94 0.99 1.00 4-CORE NO WIND 5 °C 0.48 0.48 0.48 0.48 G SWING TABLE CABLE SWING (m) 350 Pa WIND 10m SPAN 20m SPAN 30m SPAN 33m SPAN 0.13 0.41 0.88 1.05 Н NO PART OF THIS DRAWING MAY BE REPRODUCED, STORED IN A RETRIEVAL SYSTEM IN ANY FORM, OR TRANSMITTED BY ANY MEANS WITHOUT THE PRIOR PERMISSION OF TASNETWORKS © Tasmanian Networks PTY. LTD. trading as TasNetworks ABN: 24 167 357 299 ALTERATIONS ORIGINAL ISSUE ^{TILE}SERVICE CABLE - 3C & 4C 25mm2 LVABC TasNetworks NTS TERMINATING ON C5 PRO-SOLUTIONS DRAWN FACIAS, BUILDINGS OR RISER BRACKETS DESIGNED BY ELECTRO Α4 CHECKED BY H.WESTBURY REVISIO APPROVED BY A040 -D - OHC -SD - 002 А DATE APPROVED 16/APR/19

1.6.2 3C & 4C 25mm² LVABC Service Stringing to Building

1.6.4 Indicative Maximum Span Length – TasNetworks Pole to Customer Pole

1.7 Clearances Service Conductors

1.7.1 Overhead services cleareance requirements

Clearan	се Туре	Location Description	Direction	Insulated Service Conductor Clearance
		At centre of carriageway	Vertically	5.5m
		At kerb line (bottom of kerb)	Vertically	4.6m
	Roads	At verge	Vertically	3.0m
		At fence alignment	Vertically	3.0m
Ground		At fence alignment (from top of fence)	Vertically	2.0m
	Other	Private driveways and land traversable by vehicles more than 3m in height (except service stations, farms, caravan parks and other high-risk locations)	Vertically	4.6m
		Areas not normally accessible to vehicles	Vertically	3.0m
		Unreafed terraces belopping our dealer neved areas at that are subject to reductrian traffic only	Vertically	3.0m
			Horizontally	1.0m
		Poofe or similar structure not normally accessible to persone but on which a person may stand	Vertically	2.0m
		Tools of similar structure not normally accessible to persons but on which a person may stand	Horizontally	1.0m
Structures / Buildings		Covered places normally accessible to persons, including for example windows capable of being opened, roofed open verandahs and covered balconies	In any direction	1.0m
		Blank walls / windows which cannot be opened	In any direction	0.1m
		Other structures not normally accessible to persons	Vertically	2.0m
			Horizontally	1.0m
		Gas Storage Cylinders	Horizontally	1.5m
			Vertically	Not permitted
			Horizontally	3.5m
		Rotany clothes line Radio/TV antennae	Vertically	0.6m
Other Hi	igh-Risk		Horizontally	0.1m
Situa	tions	Areas where trailable sailing craft, farm machinery and irrigation pipes may be used	Vertically	5.5m
		Service Poles in the vicinity of OH conductors	Vertically	Refer 10 1 1
			Horizontally	
		Caravan parks	Vertically	5.5m
		Service station and farm driveways	Vertically	5.5m
Telecomm	unications	Telephone or Broadband Communications Cables	Vertically	1.2m

Notes:

1. All clearances are a minimum to which a conductor may sag or swing under any of the following conditions:

a. Rated maximum conductor temp in still air $(75^{\circ}C)$

b. Conductor temperature of 15°C with a wind pressure of 350Pa (blowout condition)

c. Conductor temperature of 5°C in still air

An additional 200mm to vertical clearance shown measured under normal stringing temperature is to be added to allow for sag increase under maximum operating conditions.

1.7.2 Services Clearances from Ground and Structures

1.7.3 Clearances over Roofed Areas

1.7.5 Clearances in High Risk Environments

1.8 Construction Practices

1.8.1 Services from Concrete Steel Poles

Provision of double insulation is required for services connected off concrete steel poles:

- Bare service conductors must be supported fixed to a timber crossarm or extension.
- Insulated or covered phase conductors must be installed with a loop to ensure adequate clearance from the pole steelwork. Where this cannot be achieved the conductor must have additional insulation installed.

1.8.2 Service Fusing

Service fuses shall be located at the customers Point of Attachment (PoA). The fuse is to be installed no more than 150mm below the PoA.

The only exception to this in the situation where aerial consumer mains are installed and the aerial conductors exceed 1 span. In these instances, the service fuses are to be located at the take-off pole.

1.8.3 Bonding of Service Neutral

Where customer's aerial mains are installed on steel poles, a bond between the neutral and the steel pole is to be installed at all poles except poles supporting private electrical equipment (e.g. meter box).

For house-end service attachments where the house bracket is in contact or close proximity to metal cladding, fascia or roofing material, additional insulation is to be installed. Refer D-OH1-0694-SD-001 and D-OH1-0697-SD-001.

1.8.4 Telstra Crossings

All crossings of Telstra lines shall be in accordance with:

- a) The code of practice for overhead power and telecommunications in-span crossings
- b) The arrangements for the common use of poles between the ESAA and Telstra and TasNetworks and Telstra.

Note: Where raisers are required on Telstra poles for service crossings prior permission must be obtained.

1.8.5 IPC Installations

When fitting a two-bolt connector repeatedly tighten each bolt approximately half a turn until the plastic heads shear. **DO NOT** fully tighten one bolt and then the other as a bad connection will result. For further details refer to D-OHC-J019-SD-001.

1.8.6 Service Connections & Disconnections

CONNECTION OF SERVICES:

Direct tapping on to LV ABC is preferred.

INSULATION NOTES

- 1. The insulation must <u>not</u> be stripped from the mains or service conductors.
- 2. Only one service conductor per connector is allowed. (This includes the neutral connection).
- 3. Ensure that service tee cable is fitted in correct side of insulation piercing connector.
- 4. Locate insulation piercing connectors a maximum of 300 from suspension clamp.
- 5. For double insulated conductors, remove 50mm of outer PVC sheath.
- **6**. Once installed, the connectors are <u>not</u> to be removed or disturbed. If a service is to be disconnected refer to the procedure for disconnection.
- 7. Use approved spanner for tightening the bolt. Adjustable spanners are not to be used as these tend to damage the plastic shear head. Do <u>not</u> exert a bending force on the shear head, because the shear head may break prematurely. Ensure spanner is in such a position that a sudden release cannot cause any bodily harm. The connector should be held firmly when tightening the bolt.

PROCEDURE FOR INSTALLATION

- 1. Ensure that service fuses are removed.
- 2. Open up cable using the plastic core separators.
- Open up connector sufficiently to allow it to be placed onto the neutral core of the mains cable. Do <u>not</u> completely dismantle the connector. Ensure that the piercing teeth or the connector are located centrally on the core and ensure that the protruding end of the bolt does not damage the adjacent core(s).
- 4. Insert the service conductor into the connector such that the end of the conductor is contained fully in the grease filled end cap. Ensure that the service conductor is located centrally on piercing teeth of the connector.
- 5. Tighten the bolt of the connector until shear head releases. This ensures that the correct torque has been applied and that proper contact is achieved.
- 6. Install drip loop adjacent insulation piercing connector.
- 7. Remove plastic core separator.
- 8. Repeat for phase connection(s). Connectors should be spaced at least 80mm apart (centre to centre). With multiphase services, connect the red, white, and blue phase cores of the service cable to Cores 1, 2 and 3 of the LV ABC cable respectively.

- 9. Install cable ties around the ABC tails securing them to the conductor to which the new services are being jointed. Where there is more than a single-phase connection consideration should be given to tying all tails to the conductor using one or more cable ties to increase the mechanical strength and to avoid movement of the tails in the wind.
- 10. Carry out polarity testing and phase rotation testing at the Customer's premises.

PROCEDURE FOR DISCONNECTION

The following procedure is to be followed when a service is to be disconnected:

- 1. Remove service fuse(s).
- 2. Cut service phase conductor(s) 100mm from connector.
- **3**. Bend the remaining service conductor down and seal the end of the service conductor with 3M tape. S.I. 158388
- 4. The service neutral conductor is disconnected and sealed in the same manner. Do <u>not</u> tap service to tail as disturbance to connector may lead to water entry and corrosion.

POLARITY TESTING

Similar procedures apply for service connections to bare overhead conductor system.

The only difference is in the identification of the distribution mains phase and neutral conductors at the pole.

The phase conductors of an LV ABC cable are identified by longitudinal continuous raised ribs. Each phase core is also marked with a phase number and the neutral core is identified by a series of longitudinal continuous ribs.

Apart from the above difference, the same procedures apply as outlined in Handbook for Linesmen, Chapter 11 Phasing Out).

1.8.7 Service Phasing for Load Balancing

If the service connections to the aerial bundled cable are permanent, full regard must be paid to load balancing on a three-phase system at the time the service connections are made.

To balance the service connections on a circuit the following methods should be used.

Divide the pole number by 3 and use the remainder to establish the first core connection on that pole.

If:

Remainder = 1,	Connect to Core No.1
Remainder = 2,	Connect to Core No.2
Remainder = 0,	Connect to Core No.3

After connection of House "A" has been established connect the remaining houses in rotation, i.e. House "B" to next core number after House "A".

Example:

Pole No.

26	$26 \square 3 = 8 + \underline{2 \text{ REMAINDER}}$
27	27 🗆 3 = 9 + 0 REMAINDER

28 28 3 = 9 + <u>1 REMAINDER</u>

29 29 3 = 9 + <u>2 REMAINDER</u>

- ... Connect House "A" to Core 2
- :. Connect House "A" to Core 3
- ∴ Connect House "A" to Core 1
- :. Connect House "A" to Core 2

